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A B N Nt e .

A systen of R baxes are to be searched for a single object located
in on: of them by inspecting the boxes one at a time. Given for box
i {i=2,...,R) are a prior probability Py that the object is there, a

known pesitive probability oy that if it is Lhere, the object is not
detected on a given inspsction of the box, and probability zero that
the oblecct 18 detected 4 it is not there., A searching plan is a

ipecifiod (infinite) sequencs the 2" temn of which indic:utes the box

to be inspected at the nth stage of the secarch,; and it is of interest
to determine, if possible, some "optimal" plan. w#ith the further
assumption that all inspection: are in 8 reasonatle sense inaependent;
it is s.iown that a plan which instruets the searcher to inspect at
each stage, the box in which the object is mcat likely to be found
is opiira) in the sense of ninirizing ths expected total number of
inspections rocuired to fina the object. In adaition, the optimal

plan is shown to be ultinztely pericdie il all ni'l are aqual, and
when ®=2, that it can be epproxdimated by «n ultimately pe. iodie plan
thet uoes not req.ire exact knowledge of the probabilitiesc

1 ang nzc



3. Summary and introdu:tiocn

There appears to be # number of searching ~ type problems having
congiderable practical interest which do not fsll into the general
=lass of problems treated primarily by koopman f11. Such a problenm,
considercd as a problem in msintenance analysis, might be described
as follows When a me~hznical system mal funciions, the repaimman,
or mechanic, is permitted to search among R locstions for the socurce
of troublie, but uishes Lo ¢o so in some cptimal maaner. In this
pacer 1t is assumed that there is cnly cre source of fuilure in the
gyitem, and we shall call this the object ~f the sesrch. Referring
to the possible location® ¢f the source of failure as boxes, and
tha repairmen; perheps more epproprimiely; 2. the statisticlesn, it
is desirable to devise a plan of inspe Ling the boxes cne &t 3 time
hereafter called a searching plar until the object is discovered,
2¢ that the expectec time or cost of the search is minimized  Another
descriplion of the same probiem couvld ve that where a secretary wishes
o find » letter thet is located in one of R listiangs in a filing
system: s numericel example of this type due to Meosteller is given

by Bellmsn as a resesrcn probiem in (2.



The feature the® makes the problem of geners! interest is the
f assunption, made throughout the psper, that even though at a given
| stage ~f the search the correct box is inspected, there is positive
f probsbility that the object will not be fourd and that the sesrch
must continue. Thus, it may be necessary to inspest @ given box
ssver:l times befcre the object s located Lhere, or until the
statisticien bacomes reac.nably certain the object 18 not in that
box. A single inspection of on2 box is called an observation, and
it is assumed that sll cbservations are indspendent in the sense
that  iven Yhe box to e inspected at a glven stage of the sesrch,
and given the location of the ouject, the outiome of the inspectian
is independent of elli ear!ler observations

In the present lavestigetion the further assumption is made
thet cach cbservation requivres one unit of time or costs 2 unit
amount 'ﬁ/ If the ouject is in box i, asy, the probatility of not

locating it there, on & given inspection of thet box, is assumed

to be known and we denote it Ly a where U< a <3 (4 « 1,..., R)

it was the author 8 desire at asome futwe time to

so.va the more genera  protism where an cbservetion
from box L regquires L. units of tine, 4 - 1, ... R
Howeser, it was discovered in a paper by Mstula [3]
that this problem han been sclived using dynamic pro
pramning methods by David Blackwa.l, a . though his
reaults sre unpub.ished Trhe suthor was 0% aware
 Blechwell'2 results, which contain the major pert
of this paper ag8 a speciel csse, until the present
work was writeen in the torma of a final draft



Also, if the object 1s not in a psrticular box, the probsbility of
locating it there is taken tc be O £

A:though the search i . this problem j§s carried out cver a fintte
set, whereas Koopman 18 ~oncerned prima~ily with seerching some
1 dimensional Euclidean re;ct.angle, no assuriptions are made in conne tlon
with the conditiomal probebilities, a,, described above  Koopman must
assume that these probavilities satisfy the exponentia. - saturation
law, as do Charnes and Cooper (L], who dea: primarily with the discrete
analogue of Kcopman s problem Also, the primary intescst h.rein is
t0 ainimize upeé'tad searching time, as oppossed to maximizing the
probability of finding the objext within a certain time, or ptimally
distributing the searching time available

In secticn 2 the optimai searching plan is found to be the plan
that instructs the statistician to inspect, at each stage of the
search, the box in which the object is most likely to be located The
essential featuree of this optimal sesrching plan are jts mimplicity
and its intuitive appeal, since it is slsc tha cptimal cne stage
procedure Nct only does it minimize the expected nunber of cbservstions

required to iocate the object, but it maximizes any fixed number of

observations.

LW € B3 B L, L S eet——

2/ In certain situations it might be ressonable to
assume that some cf these probabilities are positive
However , this would make the problem considerably
more compliceted by necessiteting the considerat!on
of stopping rules as well as searching pians we
shall not di scuss thiis problea any further in this

psper
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The prob!em ierds 'tse.! very nicely to a EAyesian approach,
and tnis is used to obtain cur cpiima) colution

n section 3 the speclai case where all q,'s are vqua' is con

i
sidered in further detuil, and certair periodic festures of the
optima; searching plsn are derived The optimal plan far thls case
was dete'mined earlier by Staroverov [5'.

When the number of baxes is two (R - 2}, the optime) searching
plen ca: be approximated by en even aimplar plan that becomes
pariodic beyond a certain initis! number of observaticas in one of
the >axes This plan has the sdded advantage that it may be
applied to a situation in which the a, '8 3re not known exactiy This

is done in the }sst section.



The Main Pr 'Jb‘u_sm
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Jet p - (pl, . pr) denote tie seac-her s diatribution .f the
obje:  ‘morg the R boxes: 1.e , p. ies the probability that rhe
‘ R
cbject 48 in box i (i-1 " RYand £ p. - We define 4 search
1 FY

A

ing p.an as a qumerizn} s2Quenve; ea~h term of whirh 18 cne f the
imteygers 1, . R The Kt'h member of the sequence ind* ates the
box that 18 to be 1nspeci»d at the km stage of observation if tha
object has not been iocatad in the first k . observations Ou:
criterion fcr the eptira) searching pian i3 the followiag:

. searching pian 6“ ig said ic be ~ptimal if the expe:tea
number of obdervstiors rejuired to :ocatsy the obje-t is at ‘east as
smail using 5" a2 it is using any other ssar:hing p.en &6 More
formaliy, we say 6. ig cptima. smong &.:i 5 D, the c.ass of a.!
searching plans, if and only if Ep[N ‘ 5% < Z‘;[N ‘ 5 . gD
where N is the !random’® number of obasersatione requicred to find tie
object, and E_p{ o |t ' denotes expe:tation taken with respe:t t . the

priar distribution p. gliven the plan 6

@
Since E (N ‘5}.— L P (N |65 5 wi..be cptimal ‘f it is
P K~o P

rhown that
1t y Nk [6%1< p Nk |6 .

R A CION
for a.: 8¢ D and every k-V, 1, .. 'f a sear‘thing p:an 5" <an he
found % satisfy {2 ' +then it wijl alsc be optimal in the sense¢ that

it maximizes the prchabii~ty of finding the ubjevt withia any {iven

numn 4. 2L observations
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With the assignnent of a prior distribution to the system of baxes, and
knowledgze of Che numbers o coosBp =y being the probability of not locating
the ob ot in box 4, given that the objeci 1e there - the motlem is weli-defined.
Therefore, let «’:-‘ be the searching plan under which the statistician, at each
atage inspects the bax whore the probability of finding the objlect on the next
observatian 1s greatest, and terminates inspection once the object is found
lhe probability of finding the object in bax i, at a glven stage of the seareh;
s 5, (1-a,} whers p 1s the posterior probability that the object is
in box i, given the results of the search up to the given stage. The exact
values ¢ & ;z (4 =1, ...,R) are determined by Bayes® Theorem It will be shown
in thie section that this plan b. 1s optimal in the sense of satisfying (2.1)
for all & € D and all k.

Since, at any stage of the search, the probability of finding the object
may be a raximum for more than one bax, our suggested ph.nb‘ is somewhat
acbiguous. All methedn of choosing one box from those that yield the maximum
ars squivalent, however, in the sense that they give the same expected mumber
of observations. Indeed, if the probability of finding the object at the
kth stage of observation 13 a maximvm for r boxes, then esach of these must
be inapected once and only once before inspecting any of the other R-r baxes.
That. 13, if one of the r boxes is inspected; then only the r-1 remaining boxee
yield trne maximu proba‘billty of locating the ocbject on the {(k - 1)"’ observation,
since the re.ative v&lu‘ea of their probsbilities and those of the other i-r
boxes are uneffected by the kt'h observition, Henem, for each of the K Laxes
the posterior probability of locating the object on the (k + r)t'h cbservution

i= the same; regardless of ihe order in which the r boxes were _nspected.
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For definitsness, then, let us relabel ths baxes so that
pp (1 9) 3.3 p(l-ap ) ; 4.0, masber the boxes in an order of
decrea g initial probabilitiss of finding the object. Then, if Py (kpo.o,,ka)
derctes the posterior probability that the odbject is in box i, given that
kr observations were taksn in box r, r~ 1, ..-,R, define b‘g our propoeed
searching plan, to be the rollc;w:lng:

(1) Take the first observation in box 1, since 1 is the gmallegt integer

i such that
P, (1-a,) - mgx[p, A-a)]s

(11) for J 3 2, take the 5" observation in bax 1, where 1 is “he spallest
integer such that

(342) pi(kl' "'w’kn) (l"" “1) - *3 [Pl.(kll""“s'kg) (1-.,(; !"3" and

ky * .oo * 1l = 31, 1.0, inspect the bax of smallest index for
which the probability of finding the object on the J' observation
is greatest, given that it was not loosted on the first j-1 ocbservatiocuns;
and

(111) terminate inspection when the item is found.

1t is now convenient to define a sequence of positive int. -rs Kl“ Kz, Wora o
in the fallowing manner. iet xl be the smallest integer such that

(23)  p (G, 0 2oos 0) (- o)< max [p(0,0,00) - 3]




.

Since, using 8 , we met first inspect bax 1, K, observatins will actually
ne taken there before any other box is inspected. Let us call this, and any
otaer ' .interrupted sequence of observations in a given box. & gchaip of

- gbserwations. Now, since p2(1-~ 62) P rea D pR(l- GR) implies that

B O .cny0) (-0 5 . 2 p(K,,0,-.-,0) (1 -9,), box 2 4s the

next to be inspected using b., ad we must take Kz observations there, ons

at a times, where l(2 is the smallest integer such that either

Ry (KK 00ne 50 € By(10Kp00,000,0) 1 &) , o
(2.4)

Po(K Ky 0,0, ..0) < s [ Po(Ky sKy00,000,0) (2= a‘_)] \

This complicated condition is required ®0 that we may remain consistent
with the definition of b., under which we inspect the box of guglleet index
among those for which the probability of finding the object is greatest.
(Although this condition could be simplified somewhat by choosing ancther ;
searching plan squivaient to 6.,, the advantage of 6. 1is made clesar in the i
next section. Also, the proofs in this section would remain unchanged.)

In a similar fashion, assming the integers ‘1’““""1-1’ for 13 2

have been defined, we now define K,. Firet, if l1 * .. obserwvations

J =1
3
have been made according to & , lotnr(J)bountoulm-borofmum
amotig them that were taken in bax ry, r~l, ... R. Note that each
nr(J) is either sero or the su« of a subset of &ll.nm,xd_l f and

R
B ) nr(J) - Kot ‘Jml ~ Then 1if 1.1 is the smallest integer such that
) St
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=9-
(g (2.5) "13(“1(3)'“'--%(5)) (1-a 1,1) - o [pr(nl(.i)?. N NEHIE Gr)] )
we must ' . the next KJ observations in box 1j, aceordiry ‘o b‘,,. where l(.1 ie

the smallest i{nteger such that either

pij(nl(.i)o-m.nij(d) * Kyeoompl3l (1~-a,3) <

(2.6) r”gxiJ [pr(nl(a)s"ﬁonlj(d) * KJo‘-do.orh‘J).) (1“0".)] » OF

pij(nl(.i),,oo.r\id(d) * Kyeoaopmpl3) ) (1~a13) <

- ;ﬂ: (’r("z(")f’“'“ij(-” ¢ Ky resnpl3)) (bar)] A
J

*his condition being required for the same reason as that given after (2.4).

By Bayes® Theorem, ths posterior probability is given by

k R k
pi(kl“”'kll) " Pgay 1/151 Pp Gy ¥ and, hence, tho inequalities (2.3)

and (2.6) may be written as follows: K, is the emallcst integer such that

¥
(2.3) P 2 1 (1=ra1) <p (1 a.z) 2

and KJ, § 3 2, 1is the smallest integer such that either
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ng \3) ¢ K, n(3)
P a J (=, Y max [ p.G llmé];or
! 13 13 r<1J . 2

n, ‘3) < K n )

J .
J (1'411)( max [ }.a (1)1 ,
J7J J r> 1.’

 J
where iJ it de‘ermined by (2.5). The definition of & ma;' now be restated in

terms of the ategers K1 Kz. .- as followss

(1) Tke th: first K1 otservations in box 1, onv at a time, where ‘l ie
jeternned by (2.3");

(1) 1 K, * - ¢ K, ) cbservations have been taken .nsuccessfully,
J » 2 take the next X, observations in box 15, or: a. a time,

J

where K, and 1, are determined by (2.6°) and (2.5) .cepentively:

J J
anr’

[

(111} terminate inepection once the object is found.

As a consequecnce of this formmlation, we are now able to wr.te
PP[N >k ‘a'] in ¢ sultable form in terms of the mmbers p, and o, r=l1,...,R
First note that if. for an arbitrery searching plan &, the first k ot arvations
are such that kr of theu wers taken in box r, rel,... R, with Lkr e k, .hen

| * e
(27) FIN>Kk|81~pay "+ ¢ pag

and ‘his order in which the k observatians were taken is irrelevant. How.ver,

any integer k Onybendttonask-l{o*l{l’ OK‘_Ivn. for some



G

A3l -nd Ogn<l{-. where XO-OM Kl, 52, ~ao are the integers
determined by (2.3') and (2.6'). Thus, {2.7) can be written as

kg
(2.7) Pp{N>K°‘n_..ox‘=1*n,6]°plalk1¢9«a*paan 0

where kl* A OKR-KOO '-"“"ﬂ 1*n,0(n<K.andn>1,,and,
]
from (is ard (115, we have for the special plan & ,

. n (m) +n n (m)
" m
(2.8) Pp[N) K,*--*K ,*n ' s ] 91. a.i- Orjz P, o
]
since l° ... x._, + n observations taken according to & implies that
box r,

n“(n)Onobumumnmom-ninbaxilm%(n)wmukonm

rorallr§1ih In oxder for (2.8) to be meaningful for m = 1, we must

extend the definitions of 1 3

let 4, =1 and nr(l) =0, r=1,...,R, in agreemsnt with (1¢) in the
definition of 6.7,

and n‘r(J) to include the case j = 1. Hence,

Let us now define the ssquence of funr’ioms n( 420n5" ). ¥hose
]

damains are subsets of an R-dimensional Euclidean Space as follows:

a31, andosnsK..,

@9) Qi ) < B e pyy s vhere g ool 1
that forr -1, ..., R, kr is a non-negative integer and Zk,‘__ - Ko .

for each

such

200N + K‘rl

4

r.



Note th.. the functions ‘l‘-K‘ and 3 1,0 re identicsl. ihis redundancy;
howsver. is helpful in the proofe that follow. As seen frow (2.7') the
axprassion ')In,n(kl“ . «.»gka) ia the prodability that more than ik =K *.. *K 1*n
coservations will be required unisr a sampiing plan such thet kr of these
observatians will be taken in box v where ~ = 1,...,R. Thus, &ll the informa-
tion necessary to deterwine Ppl'!: > K-,:' vo ® Km N n, b }, for au arbitrary
searching plan &, 18 glven l;y the point “1” ) o ‘“kR) in the domain of

J‘n,n( . .oss ). Hence, showing that (2.1) is tras is equivalent to proving
the folluwing theorem:

Theorem i: The sequence of funciions (2.9) have the property that for every
a2l sach Og ng K. and ali K-tuples (k,,...,k;) such that

Ek' ok * L0n® K.‘:]’ %,

)

(2.10) Q nlkyookpl 2 -A‘..n(n‘.(u‘..,,--» .oy (m)+ n..'.....‘-‘na(l)) $

i, esch functimn n{ ', . ) attains a minimum ove:r its domain at the
»

poant (n, (m), vyl (m) # n... .\,nﬂ(m)\...
n

We shall prove this result in the form of iwo lammas which follow

Lamma ): For each 0Ogn £ lll._ end all (k).‘" "kR) such that kl & ocoa?® kﬁ =,

(2.11) % .n ("1"' k) 2 ;zlm(n,o\m..,c)

Proafi

Travielly (2.11) holds for n=0, sirce kl - ag W kP. =~ (, and

4.\ O(O,, oagl) ® IPI:I PR ‘b i~ 1 for all sesar-ning plans b, and equallty



(L)

s

p 13“

cbtains .- an induction hypothesis in n, let us now as:, =+ hat (2.11)

holds for some n where O € i < ){1 by (2.9). Ql,_,n(kl” k}i) - pla.lkl %u.-."pRaRkB

with Ik = n and (2.11) may 59 written is:

k
(2.1:..1) P9y 1, = ApRaRkR > plaln* L P which we shall rewrits asg

=2
k n-: R k
(2.11.2) P % 1(111.1 kl) 2 I plla i
r-2

To show that (2.11) holds for r ¢+ 1. it 4s sufficient to show that {t
kolds for each (k.- . ¢ 1. ). v+ L. R, where (k.l,. ,u,kr,.J:.,.,kR)

is an arbitrary R:-tuple such that tk - n- Therefore. from (2.11.2) we have

4 n* l-kl k n-kl) . q-lns--kl

ey e D om0 Sl
R [ n
(2-11 3) > 22 pr‘l q_r‘r) * oy (11""01)!:

Now, since 0 < n < K, we have from (2,3*) that

n 5
q Y
P (Lo} 2p0a) .

end, by the manner in which ths boxes are ordored
Py fi 0.2) 3 p’".l-*a”) for 8 = - ., R
Tious

n k
‘ ’ - 3
ay (1 a1 p‘(l-ae) 2 P,3, (1 ua) for 8 =7, ., R



and, by (2.11.3),

kl. n*l-akl | R kr k.
po; (o ) 3 rl:s_z P(l-a ") ¢ pa "(1w)
k k k
) ) - b o 8 L
(2-11-4 L ’.px.(qur )+ [p,(2=a_ ") ¢+ pa "(1-a )]
k"l kr
= p‘(lc-a. Y+ & pr(l~=ar ) 9
»8
for 2-2,.,..R.

-

Writing (2.11.4) in the fom of (2.11.1), we have
k *1 k ‘n*l R

Palg . rf_.prarr)plal + rizpr s for 82,,,,,R,
which implies that Ql’ n’l(n:l,m,lca) > aloml(nol,o,ooo,o) holds for all
(klc, \M.kn) such that Ik <n+l, except vhere ik =u+l,k, = .. = k=0, However,
equality holds in this case and the proof of the lemma is completed.

lhe proof of Theorem 1 will be campleted through the next lesma. which
establishes (2.10) by an induction argument on m. Prior to this, however,
it is convenient to point out a useful property of the integer functions

.
nr(J) defined earlier. According to & , after ll*ono*l(.’_l observations have

been taken, the next K, observations mmst be made in box 13, s0 that the total

J
number of observations taken in box r i9 the same as it was prior to the

jth choice of observationa, for all rvi 5 Henoe, we have the following
recurrence relations

nij(.i*l) ~a () ¢k, n(rlm (), HMade=l,....

J

Lemma 2: Suppose thut for a given value of m 3 1, the wqgreesion (2.10)
holdz for each C £€n $ K"‘ and all (kl’nn ckn) such that nr-xo’ ao’&_:l. . W
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Thern "»r each 0 < n < and all (k,, ...k,) such th't+ ¥ -~ K e . +K epn,
b | - 1 m

-~ PO - ) \ \.
(2.12) Jn‘lvn(k.l,”.w.kr )Qm.l.‘n(n;(n*l)g.n.,._;_ni (mel on,,vnnk(mm

m*

Proof .

————— —

By the preceding discussion :e first note that a, (axel) = oy (m) * K and
i m

nr(;n'r?.) = rar(m)_ v %4, ad slice » . Lo

e 1 n(nl(m‘l).'- Ay Carl) ¢ oa =.:‘~R(mﬂ) )y -

ar

Qm*l n(n.,(l!l)‘,,.g.n1 (m) » Km 2o iy () » -, ..A.H(:.u) )
R m 'l

in (2.12). 1In vhat foll wyg we shali werts slepiy o ionme. 2 () ewalu-ted
v r

at @, uniess otherwise stated,
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Now, by the assumption that (2.10) noids for m, and the fact that
Qm+1,-""‘l‘f‘°’f'ka) - Qm,xm“kl’”“’kﬂ) for svery (kl""“-“kﬂ) such that
Ik, = Kj¢ooo.¢K o we ses that (2.12) holds for n = 0, lYie will now establish
(2.12) by an induction arguwent on n. Thus, we assume (2.12) to be true for

some 0K n<K ., and will show Lhat it holds for n¢l, i.e.

m+l
(2.12.1)
Qnr“l; ;-'il‘“.l”“’""'*’kﬁ) > %n«‘l‘.n*l(nl"“ soslly *Rpoonsiy ® Blse0eslly ) for all
n m+l
(k‘!.:.. E:R‘. such "1at Tk, ~ K¢ ... +Ken @ 1.

Pivet, if (&, ,...,k,) is an arbitrarsy point at which (2.12) is assumed
to hold, then it is sufficiant to show that (2.12.1) holds for each
(kl-"" Y L P kF) s 8 % 1 c.ooRe Indesd, if Lkl‘ - th.“"!(m*n*l, then
saze k_ > O and (klc sk =1, “‘"‘kﬂ"‘ wiil be a point satisfying (2.12).

-

Furthermora, it is sufficient to show that (2.12.1) holds for each

R=tuple of the form (k‘ s o\kaﬁlt 00 ,kR).,., vhere (kl,. .1.,.,.k., ‘...o,kn) satisfies

{2,12) amd k, 15 at leasl as big as the M ~component of

(0 500nony K saooomy m.ae.,,nn); the argument of Q . (°,5..5°) on the

n arl
right side of in: $n quaiity in (2.12). For, if

lyn

Qy ™ Dygencsq, B, K L sansl =1 i PR , them k< q_, for some s
| y " ny R R TR <% ~

{ hat 3 Ass =
impiiss that there is a t % s such that kt.> Q5 since Zkr In;K.’n - lq'a
Hence, we way consider the point (:;1, ' n,ktflgnncak.‘l,c . kﬂ)g satisfying
(2,12}, and (2.12.1) will held for (k]_..;n,n,kt!..,c..,kgl,“,,kg). aince
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Therefore, we consider an arbitrary point (kl’”""'r\' satisfying

(2.12), and such that kg > q, (1his must be true for some s = 1,...,R,

Y = 7 ) 2. 2
since ).kr g, by the assumption that (2.12) holds for some O gn< Km*l.,

and the definitiorn of %’1 n( o nnug®)y We have

(2.12.2) k. ; kr; a a,
pa. "t P,G pa, * L pa ;
L - l‘%ﬂ ry 8 8 r&‘. Iy

which. wvhen rewritten becomee

K q q K
(2.12.3) ¥ nile T *F3 ple. Y
o T F R R

")
L

q k
Sincs &, ;qa“ a % Gy % and the right side of (2.12 3) is positive. Henrs.

the inequaiity in (2.12.3) is preserved if we multiply the right side by @

and after rewriting in the form of (2.12.2) we have the following:

k_+1 k g +1 Q,
3 s 3 8
(2.12.4) pa + £ pa_ Dpe B S
8 8 e T B 5 N
If 8 = im", . then (2.12.4) is the statement (<.12.1) for the point
i SNPRES *leo-0.k,) o since = n +n
* Ll " qim‘l Yoot
If 8 % i ,,. then , from (2.12.4), we have
(2.12.4%) L
K 4] k_ q,*1 . S a,
pa.  *I pa. Ppa *p, G & 4 pa
8 8 \ il 8 8 - i ‘. A <k . A r Y
vz wt ! “mel %8s, 2'4,1
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From (2.4%), since n < Kjeqe We see that

A i
Py (1-aq ) 2max {pa "(1-a)],

n 0 5t l
- 3 lmu . a q!*l\’ P i 1rx:"l +p.a e )
‘1m‘1 im*l 8’9 ~ lnrvl 1m‘1 28 :

n

for any s % .y » Together, {2.12.4') and 2.12.5) yield

Kk +1 k. "1'"1’"“1 : N
pﬁus . A prd: :‘)’ }‘1 ai * m pl‘ r ’
rbg ° m*l “med mel

tre statement of (2.12.1) for the point (kl,mo,k‘*l,”o,xa) ¢ which coupletes

tre proof of the lemma.
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3. A " ocial Cese- In this ssction we assume the R bor:s are indistinguishable
in the sense thal the probability of locating the object in a given box, if

it 1s theve, is the same for all boxes. Thewafore, let a be the common valae

of the ai"gc and suppose we have lusrected the boxes unsuccesafully, according
to 8%, up the the point where we are now obliged for the first time to incpsc?
box k. Lhe bex with the smallest prior probability of containing the objech.

(1 By “ Bpq ® cooc = B o for some 1 £ ¢ <R, then according to 8* box R.
having 'he largest indax. would still be the last box to be inspected.) Ws

have taken, then, & total of M& cbaervetions in box 1, vhere

"

(33) B o <p i<, .. R,

from (2.5). We cleim that the integers “.L' i ‘!R . are the smallest integers
-

for which the insqualities in (7.1} wiil hold. Tf this is not the case leh
M, .1
H, be an integer which violates our clalm: L.e. po ' <p Then, following

g t,
plan 8%, an observation from bux R would have teo be taken befors the M‘ n
sbservation from box i. Dbut this is a contradiction. since a 7obtal number of

prior to the first Inspeclion of box R

Mi pbservations 18 taken in dox 1

tiow if senarchinz plan % is continued. the next chain of observations
must be takean from Lox R. However this chain consists meraly of cne
chesrvation since

(3 2) H,~1 K,
Pr agp a e @a* pa : g RS, | {

by (3.4) and the fact that the integers i, are the smallest for which (3 1)

holds. Thet is, although the inequalities in (3.2) are weak. the cundition
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for i.:vecting box i,, say, on the next observatior is now established by

1
(2.6%). ‘The integer 1, 1s the smallest integer such that
M
“11 max py8 1 o 2/

= < r Rl However,

pil e
le Hi i
"l.a<pagp a ", fori- 1....,R-1; by (3.1) and(3.2), so that

pila
only »na observation can bs taken in box 11,, We must then inspect bax 12,
M
N
whara 1+ 12 the amallest integer such that p. a = Max p,a 4 -

1

(MH in this equation is 1. Certainly,. by (2.6!), i, can not be R, if
M

“ & — - ‘r o ’
RS2 since pa 12 ppe, for alli -~ ), .. R, by (3.2). Aileo, since
% M

py @ e P & § Byo d g l,.- ;R-1, by (3.1) and (3.2}, then we are

<

restricted Lo only one cbservation in box 12., Similarly.

LA M
n ) b _
pina < ppe < Py s i~1.....R1, for eachn - 3,....R-1, and 1n is
different from 1], . "1‘n- 1 ard Rs since
hin 1‘.’13*1
by & 2 Pp@ > Py . for 3«1 ..,.n-1. by (3 1) and (3.2). Thus, once
" 3

we nave reached tns stage uf our search where 3% instructs us to inspect bax R,
we ake o018 “hservation there, and then one observation in each of the remfining

PED GG B o B met— # A L G Saaa? o WE Ay TE

& “his cl#ar cot ard conven’ent choice of 1. is the primary reason for the

1
ceazentlon vade in {2 6) esall that the plan &' 1s only one of several
plans we could have choser, all of which are equivalent in tnat they yleld

Voo sdine onpecled L0 re vl o Mrd e e
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boxes . .ne order 1l“eaf;i,. -1° The set of integers %.i"“" . ,1&,1} is simply

a permutation of the integers il.ua,.»l )? , chosen sc that

hil o

(3.3) Sh o "3...0p &
i *R-1

‘2.1

where, if equality holds angwhere, the quantity ou the left is associated

M11 l& j*l
with the hox having smaller index: i.e., Af s " =D Lhen
J 3 1
'lj < i §41°
from (3.3}, we nave
w Hiltl '1in 'L*l.
(3.4) e>p a 200 3P G
" | *Re-1
and each quantity - exceplt for a comacn faclor —-- is the poslerior

probability that the objJect will ks found in a particular box, after
Myt oM (*R observations have besn tsken, Froum (3.4) it io implied thet
the nsxt R observations will be a repstition of the previous R observ.utions,

taken in the sawe order. Oimiisrly. since

Ml ‘n M

*a
pRc.:.“ >py e ¥ 2 oon 2 p1R lc. ‘21 ;s fornwl, 2...., W 13.3),

we ses that our optimal search plan 5% becames eyclical in nature. That is,
sfter a certain length of time, cur "best"” sea'rching policy ie to take wne
ocbservation in each box in the order R, il,naca,iag:lg and then repeating again
ard again until the cbject is found, or until a fixed total mumber of observs-

tions have been taken.
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4o A spproximation.  In this section we assume there are only two baxcs,
and that o > ?, where ¢ 18 the probvability of loc.ti:g the objJect on a given
observ.idion 4in box 1, ginn the item is thiu. andﬂ is the corresponding
Protability sssoclated with box 2. If p ia the prior probabllity that the
object is in bax 1, with p(l-nu)?*(lﬁ Q). t ’ | ,
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) DTN
(1-p) (1-8)3° g pa :

Kekty (

(lal 1-a);

(V) forn = 2.3.000”9 mr th‘. nth observation in box 2 hus bean takﬂn,

tim one at & ti.m in bex 1, vhers Mn 18 the amyl lest




} be mtt‘n L8 rca]' 2

H* {1-p) 1-3 M*-2
(4.3.2) & g G QG A .
pa _ 4

The quantity cn the right being less then 1, since o < 1 and N* must be at
teast 2 by definition. but from (4.2) for m e |




G
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when .\In"s‘{'q Hence, (L. > 5) and (4.3.6) togeinher yleld 2ii* > I‘ln_1-‘2."-al and

-

PR e : e ] ! VE2 and M ) i W L¥*.].
Hn«l > i 2. 80 that M¥ ] > Mn*l > 2 anc HnH s either M* or 1

It Mn ~ . ®-1, the alternative possicility unler oor assumption. then

(L 3 4) implies thrat

‘ 271 i L L et
W3 o« <___ T T
Moe .
s vl e nl la

A8 in 4 . 3.6) lLowever, i 2: impilee (hat

14 M2 s PEYE NS
"]n'l ? ‘ in i3 - Mn“ w2
(4, 3 ) g i I e A <
KeM_ e oM l a ~
- g n i
py 99
wileh comoined with 4 3.7, yleids 217 | » {r".".u" 2oax 1".*-1’ ok = 2T 3
Tharesfore, M*+l > M > Ve 2 cr il 1s eitner M% or ' i witlch camnleter
n*! v n-l *

t e proof of the *heorem  foughly speaking thi: treorem tells ves that every
chaln of observaiions takea in Lox L according to 8%, ribker than the Initial

COLaLT. CLo.518l9 RU LI of tre suae namirer of chacr.utrons

i »

ow  frua section 2 ard the defirsticr of 5% aa trds s8ellion, we have
the followinp.

Pp{‘.’ > nis*) - pcn*(l.—p.\ , for 3& n g ¥+

e



and, u: genersl,

m-1
1l KeL l(i +n n
PP[N>K0 ¢ M *n+a *] * o 1 + (1-pp

1i-1
for 0 s ng i

Therefore, we may write tha following expressions:

E [ [6*1 = ¥ PN >k [b%]

k=c
K l'1 ken, ,.
o fi=o
M. K¢in*n
2 1 2
nEy [P (2 p)g~) ...
I M +l1
=p {panomx(j_oa‘lyal ‘20 LY e
n=o
9 >
(1-p)(Kel, » T (¥ 1) "
m=l
n
P K ™ < Mi @ e
s P  spa (1l I 2=l T {1p)ier)r x (W LT
i—a n=) m1 m

Let us now define 4° to be the searching plan which instructs the
statistician to tike X observations one at a time in bax 1. then one
observation in box 2 and !.* observations i1 box 1, alternateiy until tre

object is found. rrom (4 .) and (4 §), 3t is easily secer thuv
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@® o IR G
(4.6) E,{Nimlw P . pax[l’ r & R(ep)(Kel)r £ (ar%1)3%]
P 1-a m=l m=1

Cambining (4.5) and 4.6). and applying Theorem 2, we obtain the followings:

: n
oi* M
E(N[6°] - EQlH[s*] = pa* TR RURIRE See
. m-1l mel n
) aN* oM*
("‘7’ < WK g(c = Q )0(1‘p) i. “‘i'->(M”-=1)]Qm
=l : rel

B
= (1~p) £ g® = (1-p) i

mel

This inequality permits us to make the foliwing cbservation if 3 < 1/2.
By using & the statistician can éxpect to take less t:ian one coservation
more 1o fini the object than if he had used the optimsl plan 3%

The advantages of the plan 3' are twofold, First, it is very difficult
generally to prescribe the full sequence of observations for 8% (s.g.. is the
1000""  observation of 8* to be taken from box i or box 27), wheceas Tor
57 it is quite easy to prescribe; and; secondly concsining the parametars

a and B, the statisticlan need only lnow the ratio logp
. log a

which determines the value cf M*., Furthermore, Thesrsm 2 suggests othar
ohvious sezrching plans, une of these being that plan whicr uses }*-1 in place
of ¥* as in &%,
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is a final note we should like to add that if a < §, with p(1-a) 3
(1-p) (1-8), then beyond the first chain of cbservations in box 1, only one
observation is taken in box 1 between each ehadn of observations in box 2
according to 8%, and a result similar to Theorem 2 can easily be derived

for this case.
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